3,766 research outputs found

    Physics of Proximity Josephson Sensor

    Full text link
    We study the proximity Josephson sensor (PJS) in both bolometric and calorimetric operation and optimize it for different temperature ranges between 25 mK and a few Kelvin. We investigate how the radiation power is absorbed in the sensor and find that the irradiated sensor is typically in a weak nonequilibrium state. We show in detail how the proximity of the superconductors affects the device response: for example via changes in electron-phonon coupling and out-of-equilibrium noise. In addition, we estimate the applicability of graphene as the absorber material.Comment: 13 pages, 11 figures, submitted to Journal of Applied Physics, v2: Addition of a new section discussing the radiation coupling to the device, several minor change

    Electron-phonon heat transfer in monolayer and bilayer graphene

    Full text link
    We calculate the heat transfer between electrons to acoustic and optical phonons in monolayer and bilayer graphene (MLG and BLG) within the quasiequilibrium approximation. For acoustic phonons, we show how the temperature-power laws of the electron-phonon heat current for BLG differ from those previously derived for MLG and note that the high-temperature (neutral-regime) power laws for MLG and BLG are also different, with a weaker dependence on the electronic temperature in the latter. In the general case we evaluate the heat current numerically. We suggest that a measurement of the heat current could be used for an experimental determination of the electron-acoustic phonon coupling constants, which are not accurately known. However, in a typical experiment heat dissipation by electrons at very low temperatures is dominated by diffusion, and we estimate the crossover temperature at which acoustic-phonon coupling takes over in a sample with Joule heating. At even higher temperatures optical phonons begin to dominate. We study some examples of potentially relevant types of optical modes, including in particular the intrinsic in-plane modes, and additionally the remote surface phonons of a possible dielectric substrate.Comment: 13 pages, 8 figures; moved details to appendixes, added discussion of remote phonon

    Theory of temperature fluctuation statistics in superconductor-normal metal tunnel structures

    Full text link
    We describe the statistics of temperature fluctuations in a SINIS structure, where a normal metal island (N) is coupled by tunnel junctions (I) to two superconducting leads (S). We specify conditions under which this structure exhibits manifestly non-Gaussian fluctuations of temperature. We consider both the Gaussian and non-Gaussian regimes of these fluctuations, and the current fluctuations that are caused by the fluctuating temperature. We also describe a measurement setup that could be used to observe the temperature fluctuations.Comment: 10 pages, 9 figures, final versio

    Cyclostationary shot noise in mesoscopic measurements

    Get PDF
    We discuss theoretically a setup where a time-dependent current consisting of a DC bias and two sinusoidal harmonics is driven through a sample. If the sample exhibits current-dependent shot noise, the down-converted noise power spectrum varies depending on the local-oscillator phase of the mixer. The theory of this phase-dependent noise is applied to discuss the measurement of the radio-frequency single-electron transistor. We also show that this effect can be used to measure the shot noise accurately even in nonlinear high-impedance samples.Comment: 3 pages, 2 figure

    Meridional transport and deposition of atmospheric 10Be

    No full text
    10Be concentrations measured in ice cores exhibit larger temporal variability than expected based on theoretical production calculations. To investigate whether this is due to atmospheric transport a general circulation model study is performed with the 10Be production divided into stratospheric, tropospheric tropical, tropospheric subtropical and tropospheric polar sources. A control run with present day 10Be production rate is compared with a run during a geomagnetic minimum. The present 10Be production rate is 4–5 times higher at high latitudes than in the tropics whereas during a period of no geomagnetic dipole field it is constant at all latitudes. The 10Be deposition fluxes, however, show a very similar latitudinal distribution in both the present day and the geomagnetic minimum run indicating that 10Be is well mixed in the atmosphere before its deposition. This is also confirmed by the fact that the contribution of 10Be produced in the stratosphere is dominant (55%–70%) and relatively constant at all latitudes. The contribution of stratospheric 10Be is approximately 70% in Greenland and 60% in Antarctica reflecting the weaker stratosphere-troposphere air exchange in the Southern Hemisphere

    Modeling cosmogenic radionuclides 10Be and 7Be during the Maunder Minimum using the ECHAM5-HAM general circulation model

    Get PDF
    All existing 10Be records from Greenland and Antarctica show increasing concentrations during the Maunder Minimum period (MM), 1645–1715, when solar activity was very low and the climate was colder (little ice age). In detail, however, the 10Be records deviate from each other. We investigate to what extent climatic changes influence the 10Be measured in ice by modeling this period using the ECHAM5-HAM general circulation model. Production calculations show that during the MM the mean global 10Be production was higher by 32% than at present due to lower solar activity. Our modeling shows that the zonally averaged modeled 10Be deposition flux deviates by only ~8% from the average increase of 32%, indicating that climatic effects are much smaller than the production change. Due to increased stratospheric production, the 10Be content in the downward fluxes is larger during MM, leading to larger 10Be deposition fluxes in the subtropics, where stratosphere-troposphere exchange (STE) is strongest. In polar regions the effect is small. In Greenland the deposition change depends on latitude and altitude. In Antarctica the change is larger in the east than in the west. We use the 10Be/7Be ratio to study changes in STE. We find larger change between 20° N–40° N during spring, pointing to a stronger STE in the Northern Hemisphere during MM. In the Southern Hemisphere the change is small. These findings indicate that climate changes do influence the 10Be deposition fluxes, but not enough to significantly disturb the production signal. Climate-induced changes remain small, especially in polar regions

    Thermal conductance of a proximity superconductor

    Get PDF
    We study heat transport in hybrid normal metal - superconductor - normal metal (NSN) structures. We find the thermal conductance of a short superconducting wire to be strongly enhanced beyond the BCS value due to inverse proximity effect. The measurements agree with a model based on the quasiclassical theory of superconductivity in the diffusive limit. We determine a crossover temperature below which quasiparticle heat conduction dominates over the electron-phonon relaxation.Comment: 4+ pages, 3 figure

    Quantum transitions induced by the third cumulant of current fluctuations

    Full text link
    We investigate the transitions induced by external current fluctuations on a small probe quantum system. The rates for the transitions between the energy states are calculated using the real-time Keldysh formalism for the density matrix evolution. We especially detail the effects of the third cumulant of current fluctuations inductively coupled to a quantum bit and propose a setup for detecting the frequency-dependent third cumulant through the transitions it induces.Comment: 4 pages, 3 figure
    corecore